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Simulation of 3D Laser  
Radar Systems
Michael E. O’Brien and Daniel G. Fouche

■ We describe a computer model that was developed to simulate the performance 
of three-dimensional (3D) laser radars (ladars) that use arrays of Geiger-
mode avalanche photodiode (APD) detectors. The model allows considerable 
flexibility in the specifications of sensor characteristics, 3D scene, background 
light, and dynamics of the sensor platform. It is used to help design and predict 
the performance of 3D ladars used for surveillance, city topography, combat 
identification, and other applications. In particular, the model was used to help 
design the Laboratory’s foliage-penetrating airborne 3D ladar for the DARPA-
sponsored Jigsaw program. Results of the model’s simulations of Jigsaw Phase 
2 experiments agree quantitatively with actual measurements of a tank in the 
open. In addition, the model’s simulations agree well qualitatively with actual 
measurements of a tank under trees. Both the simulation and the Jigsaw data 
demonstrate an ability to obtain detailed 3D images of objects under thick 
foliage.

L    , and con-
tinues to develop, laser and detector technolo-
gies that make it possible to build compact, 

highly capable three-dimensional (3D) laser radars, 
or ladars [1]. The laser technology is based on diode-
pumped, solid-state, microchip lasers that are passively 
Q-switched [2, 3]. The detector technology is based on 
arrays of avalanche photodiode (APD) detectors operat-
ing in Geiger mode, with integrated timing circuitry for 
each detector [4].

Figure 1 shows the basic ladar concept. A short pulse 
of light from a laser diverges to illuminate the entire 
scene of interest. The reflected light is imaged onto a 
two-dimensional array of detectors. Rather than mea-
suring light intensity, as in a traditional camera, these 
detectors measure the time of arrival of the reflected 
light. This arrival time is linearly dependent on the 
range to the part of the scene imaged onto a detector. 
With each pixel coded with range, the ladar produces a 
3D angle-angle-range image from a single laser pulse. 

Our initial interest for this type of 3D ladar was 
discrimination and aim-point selection for advanced 

interceptor seekers. The ladar is also well suited for sur-
veillance, topography, and navigation of autonomous 
vehicles and robots. In addition, the Laboratory ladar 
used for the Defense Advanced Research Program Ad-
ministration (DARPA) Jigsaw program made 3D im-
ages of objects that were obscured by thick foliage [5].

To demonstrate the concept for this type of 3D la-
dar, the Laboratory originally constructed an experi-
mental system, or brassboard, using a 1-kHz microchip 
laser, a 4 × 4 array of Geiger-mode APDs, and scanning 
mirrors to build up images with 128 × 128 or so pixels. 
Details of the brassboard and the 3D images obtained 
from it are found elsewhere [4, 6, 7]. More recent 3D 
ladars use 32 × 32 arrays of integrated detectors and 
timing circuitry. These ladars and the laser and detec-
tor technologies on which they are based are described 
in other articles [1, 4, 5, 8]. Larger arrays are now being 
developed.

Before the 32 × 32 detector arrays were built into 
fieldable systems, we developed a computer model to 
simulate 3D ladars of this type. We use the model to 
help design ladars, to predict overall system perfor-
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FIGURE 1. Basic concept for three-dimensional (3D) angle-angle-range laser radar (ladar) using an imaging detector 
array. The entire scene is flood illuminated and imaged on a single laser pulse. Each pixel in the avalanche photodiode 
(APD) detector array measures the time of arrival of the reflected light. The arrival time depends on the range to the 
imaged target element. With each pixel coded with range, the ladar produces a 3D angle-angle-range image from a 
single laser pulse.

mance, and to develop data-processing algorithms. In 
this article, we describe the model and compare its re-
sults to measurement data from the Jigsaw foliage-pen-
etrating ladar.

Analysis of Geiger-Mode Probabilities  
of Detection and False Alarm

In our simulations, we use the same model for every 
detector in the focal-plane array. This section describes 
the single-detector model. We explain the use of Pois-
son statistics for both signal and noise, describe the de-
tection and timing model, and show single-pulse and 
multiple-pulse probabilities of detection and false alarm. 
The multiple-pulse results, which are obtained through 
a Monte Carlo technique, include those for a target ob-
scured by foliage or camouflage.

Applicability of Poisson Statistics

In Geiger mode, the reverse bias across an APD is so 
high that the rate of creation of charge carriers by im-
pact ionization exceeds the rate at which the charge car-
riers can be extracted from the device, and the output 
current quickly surges to a saturated value set by circuit 
parameters. A single electron can initiate the current 
surge, or firing. We use the term primary electron for an 
electron that initiates a firing. Primary electrons include 
both photoelectrons, which are created by absorption of 
light, and dark-current electrons, which are created by 

thermal effects within the detector material. Sources of 
photoelectrons are laser light reflected from the target, 
background light (e.g., reflected sunlight), and aerosol 
backscatter of laser light. For our simulations, we as-
sume that detector firings from all light and thermal 
sources follow Poisson statistics. This assumption is 
based on the following considerations.

First, Lincoln Laboratory demonstrated experimen-
tally that firings in response to incident incoherent light 
follow Poisson statistics [7]. We illuminated an array of 
Geiger-mode APDs with incoherent light from incan-
descent lamps providing a nearly constant photon rate. 
We repetitively biased the detectors into Geiger mode 
and recorded the times (relative to the bias-on time) of 
the firings. Figure 2 shows the results [6]. The graph 
shows the measured probability of firing at a particular 
time after turn-on versus that time. The straight line, a 
least-squares fit to the data of this log-linear graph, fits 
the data quite well. It follows the equation P(t)= 0.0145 
exp(–0.147t), the functional form of which agrees well 
with that of the theoretical equation for a Poisson pro-
cess; namely, P(t) = r exp(–rt), where r is the photon 
rate at the detector. Thus, firing from incoherent light, 
such as reflected sunlight, is a Poisson process.

Detection of reflected laser light is a Poisson process 
under two conditions, both of which we have assumed 
have been met for the simulations to date. The first 
condition is that the quantity d/A must be much greater 

Target

3D image
Receiver optics

Pixels color coded with range 

APD array

Short-pulse 

laser illu
minator



• O’BRIEN AND FOUCHE
Simulation of 3D Laser Radar Systems

VOLUME 15, NUMBER 1, 2005 LINCOLN LABORATORY JOURNAL 39

than one, where d is the number of degrees of freedom 
in the sampled intensity (speckle) distribution and A 
is the mean number of photoelectrons in the measure-
ment interval [9]. Generally, d/A >> 1 for Lincoln Lab-
oratory ladars, since we design them so that d >> 1 and 
operate them such that A < 1. The value of d is large 
because the instantaneous field of view of a detector is 
several times larger than the diffraction-limited angle. 
Therefore, many speckles in the reflected intensity pat-
tern fall within the receiving telescope. For Jigsaw, d/A 
is of order 104, and the first condition is well satisfied. 

The second condition is that atmospheric turbulence 
must have a negligible effect on the speckle pattern at 
the receiver. For the Jigsaw simulations presented in this 
article, the vertical propagation distances are so short 
(about 150 m) that turbulence effects are indeed ex-
pected to be negligible. With both conditions satisfied 
in the Jigsaw scenario, our use of Poisson statistics for 
laser detection in the Jigsaw simulation is well justified. 

This conclusion applies not only to the target return 
(i.e., the signal), but also to the backscatter of laser light 
from atmospheric aerosol in front of the target. Aerosol 
backscatter will meet the Poisson conditions even better 
than the signal will, as the value of d can only be larg-
er (if only because the range depth of the backscatter 
could exceed the coherence length of the laser light), the 
value of A will likely be smaller (and must be less than 

one anyway in order to measure the target, as we show 
later), and the propagation length through turbulence 
will be shorter. 

Finally, we note that Alex McIntosh of the Electro-
optical Materials and Devices group at Lincoln Labora-
tory has experimentally determined that Geiger-mode 
APD detector firings from dark current follow Poisson 
statistics [10]. His procedure was the same as that de-
scribed above for incoherent light (which led to Figure 
2), except he prevented any light from reaching the de-
tector.

In our simulations, therefore, we assume Poisson sta-
tistics for detector firings initiated by photons and by 
dark current. Firings from laser light reflected from the 
target constitute the signal. Firings from background 
light, aerosol backscatter, and dark current constitute 
noise. The only other source of noise in Geiger-mode 
APDs that we must be concerned about is cross talk, 
and that topic is handled in a later section.

Relevant Properties of Poisson Processes

For a Poisson process, the probability that m events oc-
cur between times t1 and t2 is 
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and r(t) is the rate function of the process [9]. In our 
case, an event is the creation of a primary electron. 
The mean of this probability distribution is equal to 
M(t1,t2). From Equation 1, the probability that no pri-
mary electrons are created between times t1 and t2 is 
exp[–M(t1,t2)], and the probability that one or more 
are created is 1 – exp[–M(t1,t2)].

A Poisson process has the reproductive property; i.e., 
the sum of any number of statistically independent, 
Poisson-distributed random variables is itself a Poisson-
distributed random variable, with a mean rate given by 
the sum of the individual mean rates. Another property 
of a Poisson process is that the number of events gen-
erated in any time interval is statistically independent 
of the number generated in any other non-overlapping 
interval.

FIGURE 2. Measured probability of firing versus time when 
an array of Geiger-mode detectors was illuminated with in-
coherent light. The straight line is a least-squares fit to the 
data of this log-linear graph. The exponential dependence 
indicates that firing of Geiger-mode APDs by incoherent 
light follows Poisson statistics.
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Model for Detection by Typical Geiger-Mode  
APD and Electronics

Three Poisson processes create primary electrons: ab-
sorption of laser photons, absorption of background 
photons, and generation of dark current. These process-
es are statistically independent of one another as long 
as the rate of primary-electron creation is not saturated. 
We assume that this is the case because our ladars are 
generally not operated in a saturated regime. Therefore, 
the three occurring simultaneously constitute a Poisson 
process with a mean rate of creating primary electrons 
given by the sum of the three individual mean rates.

The APD is biased into Geiger mode for a particular 
time interval, or gate, on every laser pulse. The detec-
tor fires in response to the first primary electron created 
within the gate. Because the detector takes ten nano-
seconds or more to reset after firing, we have made no 
attempt in our ladars to date to enable the detector to 
fire more than once per laser pulse. The detector either 
fires once or not at all. Thus, if the detector fires from 
a noise source before laser photons reflected from the 
target arrive, then the detector will not respond to the 
target return for that laser pulse.

Within the gate, time is divided into discrete bins, 
each with the same duration. The electronics provide 
the time (i.e., the bin number) of the detector firing, if 
any. The bin width is typically 0.5 nsecs, corresponding 
to a range bin that is 7.5 cm wide.

Single-Pulse Firing Probabilities for  
Geiger-Mode Detectors

Equations 1 and 2 can be adapted to the case of discrete 
bins. We identify t1 and t2 as the start and stop times of 
a particular bin, say the ith bin; M(t1,t2) as Mi, which 
is the mean number of primary electrons created in the 
ith bin from all three Poisson processes; and P(m;t1,t2) 
as P(m;i), which is the probability that m primary elec-
trons are created in the ith bin.

Consider the results of a single laser pulse. Because 
the detector fires in response to the first primary elec-
tron, the only way for firing to occur in the jth bin is 
to have no primary electrons in the first j – 1 bins and 
then at least one primary electron in the jth bin. There-
fore, the probability that the detector fires in the jth bin 
is
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The first equality in Equation 3 holds because the num-
ber of events in any bin is independent of the number of 
events in any other bin for a Poisson process. Equation 
3 shows that, for a Geiger-mode detector, the probabil-
ity of firing in the jth bin is determined not only by Mj 
but also by the values of Mi (i < j) in all the earlier bins. 
In fact, that probability is always reduced by any non-
zero values of Mi in earlier bins.

It is important to note that a Geiger-mode detector 
can provide a linear output. Suppose that the sum of 
the Mi for all the bins in Equation 3 is much less than 
one primary electron. Then the first factor on the right-
hand side is approximately one, and the second factor is 
approximately Mj. Therefore, the probability of firing 
in the jth bin is essentially equal to Mj ; i.e., it is lin-
early proportional to the signal-plus-noise level for that 
bin. Suppose we repeat the measurement n times under 
identical conditions for n laser pulses. Then a plot of 
the number of firings versus bin number (i.e., the time 
histogram or range histogram) will closely approximate 
a realization of the single-pulse temporal output from a 
linear detector, where the linear detector has the same 
set of Mj values, but with each multiplied by n, and 
has no noise other than that from the Poisson detec-
tion statistics represented by the values of nMj. By using 
this technique—reducing signal and noise to much less 
than one primary electron per pulse and repeating the 
measurement over many laser pulses—we are able to 
use Geiger-mode detectors to see targets behind obscu-
rants, as is demonstrated later in this article.

Let us assume that the mean rates of primary-elec-
tron creation by absorption of background photons and 
by dark current are constant during data collection. 
We define the combined mean rate as N (the noise), 
with units of primary electrons per gate interval, and 
the number of bins within the gate as b. Then the noise 
contribution to all Mi is w = N/b. For now, we assume 
there is no obscurant in front of the target. We define S 
(the signal) as the mean number of target-reflected laser 
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photoelectrons created within the gate, and we define 
the bins such that the entire signal falls within a single 
one called the target bin. Let f be the fraction of the 
b bins that are in front of the target bin. Then, from 
Equation 3, the probability of firing in the target bin is

 P fN S wtarget = − − − −[ ]exp( ) exp( ) .1  (4)

Equation 4 shows that the probability of firing in the 
target bin is reduced by the factor exp(–fN), where fN 
is the mean number of noise primary electrons created 
within the gate before the arrival of laser photons from 
the target. For noise not to affect Ptarget substantially, 
the value of fN must be much less than one primary 
electron. 

Figure 3 shows log-linear graphs of Ptarget (solid 
curves) as functions of the laser signal S, with the noise 
level N as a parameter. There is no obscurant for these 
curves. The dotted curves are probabilities of false 
alarm (PFA), which is the probability that the detector 
fires in one of the non-target bins. The graphs differ in 
the value of f. From top to bottom, the target return ar-
rives at the beginning (f = 0), in the middle (f = 0.495), 
and at the end (f = 0.995) of the gate. The number of 
bins b is fixed at 200. This choice is not critical, since 
the results change only slightly as the number of bins 
varies between ten and infinity.

When the target is at the very front of the gate (Fig-
ure 3, top), signal photoelectrons have an opportunity 
to trigger the detector in the first bin, making the prob-
abilities of detection (i.e., the probabilities of firing in 
the target bin) nearly independent of the noise level. 
Increased noise actually increases Ptarget a little, because 
noise, in addition to the target return, can cause a firing 
in the target bin.

The situation is reversed when the target is at the 
very back of the gate (Figure 3, bottom), as noise has 
full opportunity to trigger the detector in all bins. From 
Equation 4 with f near unity, Ptarget is limited to ap-
proximately exp(–N) no matter how strong the signal. 
For example, for Ptarget to be greater than 0.37 requires 
that noise be no more than one primary electron per 
gate interval.

When the target is in the middle of the gate (Fig-
ure 3, middle), noise can potentially trigger the detector 
in only half of the bins before the target return arrives. 
Thus Ptarget is limited to approximately exp(–N/2).
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FIGURE 3. Theoretical single-pulse probabilities of target 
detection (solid curves) and false alarm (dashed curves) 
versus mean signal level S for a Geiger-mode detector. The 
curves are differentiated by, and labeled with, the mean 
noise level N, in units of primary electrons per detector-on 
time. From top to bottom, the target return arrives at the be-
ginning, middle, and end of the gate. There are 200 time bins 
within the gate, and the target return falls in one bin. The 
graphs show that the probability of detection is greatly af-
fected by how much noise occurs before the laser signal ar-
rives at the detector.
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Improving Single-Pulse Probabilities

It is clearly advantageous to minimize the value of fN, 
the mean number of primary electrons created by noise 
between the beginning of the gate and the target bin. 
One way to minimize this value is to move the gate so 
that it opens just before laser photons reflected from the 
target arrive. The degree of minimization, however, is 
limited by the range depth of the imaged scene, because 
in the Lincoln Laboratory ladars all the detectors in the 
array are biased into Geiger mode simultaneously. An-
other way to reduce the value of fN is to cut down the 
noise level, such as by cooling the detector (to reduce 
dark current) and by using a narrow-bandpass spectral 
filter in the receiver optical train (to reduce background 
light).

Despite taking all practical measures, we might find 
that the background-light level is still high enough to 
prevent the detector from reaching the desired prob-
ability of detection. In that case, we can always further 
decrease background light at the detector by putting 
an attenuator into the optical path of the receiver or 
by reducing the size of the receiver aperture. However, 
because the target return is attenuated by the same fac-
tor as the noise is, we must ensure that enough signal 
remains to yield the desired probability of detecting the 
target.

Multiple-Pulse Detection and False-Alarm Probabilities

If we cannot obtain the desired detection and false-
alarm probabilities on a single pulse, we can improve 
the probabilities by processing data from multiple puls-
es. We assume that any and all target returns from pulse 
to pulse fall within the same time bin of the gate. The 
assumption is valid for a static scenario. It would also 
apply when the delay between transmission of the laser 
pulse and opening of the gate is adjusted to compensate 
for any range rate. In either case, signal firings from the 
target accumulate in one bin, while noise firings from 
background light and dark current are spread randomly 
over all bins. In multiple-pulse processing, we simply 
identify the bin in which accumulation occurs; i.e., we 
identify coincidences of the target returns.

Data from n laser pulses are processed as a set. On 
each pulse, we note the bin number of the firing, if any. 
If we assume that the probability of firing in any bin re-

mains constant for all n laser pulses and that the results 
of any pulse are independent of the results of all the 
other pulses, then, for any bin, the number of firings in 
n pulses follows binomial statistics. We can then calcu-
late analytically the probabilities of interest, at least for 
a few pulses [11].

Monte Carlo Technique

When there is noise and more than a few pulses, we use 
a Monte Carlo technique to determine the probabilities. 
We first specify the signal-plus-noise level (in primary 
electrons) versus time within the range gate. These de-
termine the Mj values for each bin needed for Equation 
3. The contributions of background light and dark cur-
rent to the Mj values are assumed constant for all bins. 
We specify the range distribution of any obscurant and 
assume (for now) that the target return is in a single 
bin. By using Equation 3, we calculate the single-pulse 
Pj for all range bins j and then calculate its cumulative 
distribution.

To represent at what range, if any, the detector fires 
on a given laser pulse, we let the computer choose a 
random number from a uniform distribution over zero 
to one, and then we translate the random number to a 
range via the cumulative distribution function
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FIGURE 4. Illustration of Monte Carlo technique for choos-
ing the range that a detector measures on a particular laser 
pulse, given a previously determined cumulative distribu-
tion function (CDF). A random number y selected from a 
uniform distribution between 0 and 1 is mapped into a range 
R via the CDF. 
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Figure 4 illustrates this translation. We perform this 
process Q times and store the results. The number Q is 
large, typically on the order of ten million.

When the scenario of interest involves n laser pulses, 
we divide the Q results into sets of n pulses. For each of 
the Q/n sets, we determine according to some detection 
law if the target is detected, or if there is a false alarm, 
or if neither happens. An example of a detection law 
(the most-firings law) is to choose as the target bin that 
which has the most detector firings. Another law (the 
threshold law) is to choose as the target bin the only bin 
for which the number of firings exceeds some thresh-
old, if indeed there is one and only one. For any law, a 
detection occurs if the chosen bin is actually the target 
bin, a false alarm occurs if the chosen bin is a non-target 
bin, and neither occurs if no bin is chosen. The prob-
ability of detection is then the number of sets for which 
a detection occurred divided by Q/n. The probability of 
false alarm is defined similarly.

In contrast to the single-pulse case, the multiple-pulse 
probabilities are significantly affected by the number of 
time bins within a gate of fixed duration. The number 
of bins is important because dividing a given amount of 
noise into more bins lowers the probability of accumu-
lating multiple firings in any particular bin. The mul-
tiple-pulse calculations shown later in this article are 
for 200 bins per gate, the same as for the single-pulse 
results shown above.

Monte Carlo Results (No Obscurants)

Figure 5 shows examples of Monte Carlo results for a 
single pixel when there is no obscurant, that is, when 
there is no aerosol and when only the target is within 
the instantaneous field of view of the detector. For all 
four graphs, there are 200 range bins and the target is in 
the middle of the gate (f = 0.5). The four graphs differ in 
noise level B (photoelectrons/gate) and in the detection 
law, as described in the figure caption. The abscissa for 
each graph is the number of laser pulses n. The ordinate 
is the total signal in n pulses, i.e., the signal level per 
pulse times the number of pulses. Each blue curve is for 
a specific detection probability and each red curve is for 
a specific false-alarm probability, as labeled. Presenting 
the results in this format allows us to quickly determine 
an acceptable number of pulses over which to divide the 
total energy available for the measurement. The wiggles 

in the curves are caused by probabilistic variations in 
our Monte Carlo calculations and could be smoothed 
out by using more trials (i.e., a larger Q ).

For Figure 5(a), there is no noise, and the threshold 
law with a threshold of two is used. We see that ob-
taining a detection probability of 99% requires a total 
of seven photoelectrons spread over ten or more pulses. 
Even more total signal is required at fewer than ten 
pulses because the detector is entering saturation. As a 
point of comparison, it takes only 4.6 photoelectrons to 
obtain a detection probability of 99% for either a single 
pulse, the most-firings law, or the threshold law with a 
threshold of one.

For Figure 5(b), noise at a level of 0.1 photoelectrons 
per gate is included. We see that there is a penalty for 
dividing the fixed amount of total signal into too many 
pulses. The penalty arises because the 0.1 photoelec-
trons of noise is encountered on every pulse. With more 
pulses, noise has a better chance of triggering the de-
tector at least twice in the same bin. Once a noise bin 
crosses the threshold, a detection is no longer possible 
under the threshold law, no matter how many times 
the detector fires in the target bin. On the other hand, 
dividing the signal into too few pulses causes detector 
saturation and reduces the chances that the signal will 
trigger the detector at least twice. Thus there is an opti-
mum number of pulses for a given detection probability. 
For example, ten to fifteen pulses is optimum for 99% 
detection probability, and the minimum total signal re-
quired is eight photoelectrons—a little higher than the 
seven photoelectrons required when there is no noise.

For Figure 5(c), the threshold is three firings in a 
bin. Raising the threshold has reduced the probability 
that noise firings reach it, so the curves are flatter at 
the higher number of pulses. However, with a higher 
threshold, more total signal is needed to reach a given 
detection probability. Here it takes nine to ten photo-
electrons to achieve a detection probability of 99%.

For Figure 5(d), the most-firings law is used. Com-
pare this result to Figure 5(b). The detection-prob-
ability curves for the most-firings law are flatter at 
high values of n because the target bin is more likely 
to have more firings than any noise bin, even though 
one or more noise bins are likely to have at least two 
firings. The false-alarm probabilities at low values of 
n are higher because the number of target firings has 
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decreased more than the number of noise firings, ow-
ing to detector saturation for the target signal. At high 
values of n, the false-alarm probabilities are the same 
because the probability of a particular experimental 
result dominates the overall false-alarm probability for 
both the threshold law and the most-firings law; that 
experimental result is two firings in a single non-target 
bin with zero or one target firings.

Monte Carlo Results for an Obscured Target

For a Geiger-mode detector to see a target that is par-
tially obscured by foliage or a camouflage net, the sig-
nal from the obscurant must be small. With this condi-

FIGURE 5. Results from multiple-pulse Monte Carlo simulations of Geiger-mode detection when there are no obscurants. 
The abscissa is the number of laser pulses n processed as a set. The ordinate is the total signal (i.e., the single-pulse signal 
level S times the number of pulses n) in photoelectrons. The blue and red curves are lines of constant probability of detection 
and false alarm, respectively, as labeled. Shown on each graph are the noise level B, in primary electrons per range gate, and 
the detection law (threshold law with a particular threshold t or most-hits law). For this and the following figure, the target is 
in the middle of the range gate, which is divided into 200 bins. Such graphs can be used to determine the optimum number of 
pulses over which to spread the total signal.
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tion, the signal from the target will likely be small, too; 
therefore, the target will have to be illuminated many 
times.

In this section, we present results of Monte Carlo 
calculations for multiple-pulse illumination of a target 
behind an obscurant. We address only a single detec-
tor and assume that its field of view encompasses both 
obscurant and target. The obscurant can be an opaque 
surface such as foliage or camouflage that partially fills 
the field of view, or it can be a partially transmissive 
substance such as smoke, fog, or aerosol that fully fills 
the field of view.

The detection law that we use to determine target 
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range from the range histogram is to choose the last bin 
for which the number of firings exceeds a threshold. 
With this law, the detection probability depends on the 
total signal from the obscurant but is independent of 
its range distribution, as can be deduced from Equation 
3. The false-alarm probability, however, in general does 
depend on the distribution of the obscurant.

Figure 6 shows some results of Monte Carlo calcula-
tions. The abscissa is the number of laser pulses n, and 
the ordinate is n times the mean number of photoelec-
trons that would be created by the single-pulse target 
return if there were no obscurant. The curves are those 
of constant detection probability, as labeled. The prob-
abilities of false alarm are not shown because, for the 
conditions of these graphs, they are simply one minus 
the corresponding detection probabilities. For all three 
graphs, the range-integrated return of the obscurant 
is nine times that from the target (90% obscuration), 
there are two hundred range bins, and the target is in 
the center of the range gate. The straight dotted lines 
(included in the bottom graph only) represent the mean 
number of photoelectrons per pulse from both target 
(10% of the total) and obscurant (90%). The three 
graphs differ in their values for the average number of 
photoelectrons from background light and dark cur-
rent per range gate (B) and in the threshold used in the 
range-coincidence processing.

All the detection-probability curves in Figure 6 have 
an upper and a lower portion. The upper portion of 
each curve is set by the per-pulse signal from the ob-
scurant. When the obscurant return gets as high as a 
few photoelectrons per pulse, the single-pulse probabil-
ity of firing from the obscurant approaches one, leav-
ing little chance for a target firing. The lower portion of 
each curve is set by the noise level B and the threshold 
and behaves similarly to the curves in parts a, b, and c 
in Figure 5. For B = 0 (top graph), the lower portion 
approaches the no-obscurant case as the number of 
pulses increases and therefore as the obscurant return 
per pulse decreases. As B increases (middle graph), the 
lower portions trend increasingly up with higher values 
of n, because post-target bins have more opportunities 
to build up to threshold, and those opportunities must 
be decreased by increasing the single-pulse laser return. 
These trends are counteracted by increasing the value of 
the threshold (bottom graph).

FIGURE 6. Results from multiple-pulse Monte Carlo simu-
lations when the target is 90% obscured. The total signal 
combines target and obscurant. The blue curves are those 
for constant probability of detection, as labeled (false-alarm 
curves are not included). The straight dotted lines on the 
bottom graph represent the number of photoelectrons per 
pulse from both target (10% of total) and obscurant (90% of 
total). The detection law we use selects the last range bin 
for which the number of firings exceeds a threshold. The 
threshold and the noise level B are shown on each graph. 
The bottom graph shows that a 99% probability of detection 
can be obtained with under twenty photoelectrons from the 
target, despite the noise and 90% obscuration.
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The graphs in Figure 6 indicate that seeing targets 
through obscurants is quite possible with a Geiger-mode 
detector, even when the obscurant return is nine times 
stronger than the target return. For example, the bot-
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tom graph for B = 0.1 and a threshold of five indicates 
that a 99% probability of detecting the target can be 
obtained with fewer than two hundred photoelectrons 
from obscurant and target (and fewer than twenty from 
the target alone) by dividing this signal over about five 
hundred to a thousand pulses. For Lincoln Laboratory 
ladars, which have typical pulse rates of order 10 kHz, a 
thousand pulses are obtained in about 0.1 sec.

We have found that the general characteristics of the 
graphs in Figure 6 are present for a wide range of values 
for noise level B and obscurant percentage. In general, 
the upper and lower portions of the constant-detec-
tion-probability curves get squeezed together as B or the 
obscurant percentage, or both, increase. Concomitant 
with the squeezing is a movement of the curves up and 
to the right on the graphs. Raising the threshold reduc-
es the squeezing, but results generally in more move-
ment up and to the right. A movement up corresponds 
to needing more total signal, and a movement to the 
right corresponds to dividing the total signal into more 
pulses, in order to obtain a given probability of detec-
tion. For an obscurant-penetrating ladar, we would like 
to maintain enough space between the upper and lower 
portions of the curves to accommodate reflectivity (i.e., 
signal level) differences from different pixels in a scene. 
Also, we must keep in mind that the obscurant percent-
age for foliage will vary from pixel to pixel.

 Graphs such as those in Figure 6 helped Lincoln 
Laboratory design the Jigsaw 3D ladar described else-
where in this issue of the Journal. Jigsaw data presented 
later in this article demonstrate obscurant penetration.

Multipixel System Simulation

The single-detector analysis presented in the previous 
section is the basis for the simulation of a ladar with a 
detector array viewing a complex scene. The flow chart 
in Figure 7 illustrates the relationships among the vari-
ous elements of the simulation. The input scene at the 
top of the chart is rendered as a grid of pixels, each with 
a range and reflectivity. This rendered input scene is 
more highly resolved than the image provided by the 
ladar; therefore, we call the pixels of the input scene 
micropixels. For example, the input scene may have 
4 × 4 micropixels falling within the field of view of a 
single detector. With this approach, we are able to allow 
for range and reflectivity variations within a single de-

tector pixel, as may be required to simulate foliage or a 
camouflage net over an extended object on the ground.

The green boxes show the sources of light associated 
with each micropixel. The four sources are laser light 
and sunlight reflected both from the surface represented 
by the micropixel and from aerosol located between the 
ladar and micropixel. We account for the time profiles 
and optics-induced blur of each of these sources.

In the upper two blue blocks, we sum the time pro-
files of all the micropixels (say 4 × 4) associated with 
a particular detector, apply the proper scaling factor to 
convert from reflectivity to photoelectrons, and add a 
constant rate of primary electrons from dark current. In 
the lower two blue blocks, we compute the probability 
that each detector will fire versus time. This computa-
tion includes the effect of APD timing jitter, as repre-
sented by a temporal response function.

Next we use a Monte Carlo technique to yield the 
time that each detector fires on a laser pulse, including 
those firings from cross talk within the detector array. 
We repeat this step multiple times if the scenario in-
volves multiple laser pulses in an essentially static situ-
ation. 

At this point, coincidence processing can be per-
formed on the multiple-pulse results for each detector to 
yield an image for display. This step may involve coor-
dinate transformations. For example, the Jigsaw system 
converts from an angle-angle-range coordinate system 
to an earth-fixed Cartesian coordinate system before 
coincidence processing.

If the scenario is dynamic, because either the scene 
changes with time or the sensor moves relative to the 
scene with time, or both, then the process illustrated in 
Figure 7 is repeated multiple times. Each time, the in-
put scene is changed slightly from the previous one ac-
cording to the selected time increment between repeats. 
Coincidence processing and image display can be done 
with the combined results of multiple time steps.

The remainder of this section, along with the follow-
ing four sections, describe the elements of the simula-
tion in more detail. Examples are drawn mostly from 
simulations of the foliage-penetrating Jigsaw system dis-
cussed in more detail in a later section entitled “Jigsaw 
Case Study” and elsewhere is this issue of the Journal 
[5]. The primary objective of the Jigsaw system is to 
identify a single target under trees.
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Input Scene Generation

The first step of the simulation process is to generate a 
scene that we want to view with a 3D ladar system. A 
scene typically consists of many different types of ob-
jects such as buildings, vehicles, and trees. Some objects 
(the vehicles) may be obscured by other objects (the 
trees). Since the ladar systems are usually mounted on 
a moving platform (such as an aircraft) when collecting 
data, we need to view the scene of interest from many 
different view points to simulate the motion of the plat-
form. Any scanning subsystem is also simulated.

The scene-simulator program, written in C, uses the 
OpenGL graphics library to generate a scene. The pro-

gram then renders computer-aided design (CAD) mod-
els of objects within OpenGL’s depth buffer. This pro-
cess utilizes the power of existing graphics cards for the 
3D computations. The OpenGL depth buffer provides 
range from the sensor to the scene at a selectable angular 
resolution. The OpenGL library creates the proper per-
spective view with hidden surface removal. The flight 
path of the platform (at selectable temporal sampling) is 
an input to the code. The input scene remains the same 
for a fixed amount of time (defined by the temporal 
sampling), which results in a slightly inaccurate view of 
the scene for each laser pulse. We minimize this prob-
lem by sampling (in time) the scene more finely upon 
generation, with a cost of storing a larger file. 

FIGURE 7. Flow chart of simulation steps for a static scenario, illustrating how the various elements fit together. 
The numbers given in the flow chart are typical image sizes used in the simulation (1024 × 1024 for the input scene 
and 256 × 256 for the APD array). The green blocks address the sources of signal and noise included in the simu-
lation. These are combined for each range value and for each APD pixel, as shown in the first two blue blocks. 
The last two blue blocks are the steps used to calculate a CDF for each APD pixel. This CDF is used in combina-
tion with the Monte Carlo technique, as illustrated in the red block. The Monte Carlo and cross-talk steps are re-
peated for each laser pulse simulated. All these steps, including the generation of the input scene, are repeated 
for each time step.
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The angular resolution of the scene is greater than 
the angular resolution of one APD pixel in order to pro-
vide range and reflectivity variations within each APD 
pixel. This additional resolution is especially important 
when we are simulating foliage, because we need to rep-
resent a variety of ranges (from the depth of the tree 
canopy and whatever is under it) and reflectivities (from 
the near-random angle of incidence of the foliage) with-
in a single APD pixel. Typically, we divide each APD 
pixel into 4 × 4 or 8 × 8 micropixels. 

For each surface element in the scene, we specify a 
reflectivity at normal incidence. We assume that the ob-
ject surfaces are Lambertian scatterers so that the reflec-
tivity of the surface is proportional to the cosine of the 
angle of incidence of the laser. Within the C code, this 
calculation is implemented by color coding the reflec-
tivity in one of the OpenGL color buffers. Since each 
polygon in the CAD model is color coded, we can also 
have different reflectivities within an object (leaves ver-
sus bark on trees, for example), provided each polygon 
in the model has a material type assigned to it. In the 
graphics card there is a one-to-one correspondence be-
tween pixels in the depth buffer and the color buffer. 
Figure 8 shows an example scene from the scene-gen-
eration process.

FIGURE 8. Images of color-coded relative reflectivity (left) and color-coded height (right) generated by our scene-generation 
code. The color bar shows the correspondence between color, reflectivity ρ, and height in meters. The relative reflectivity im-
age shows the cosine dependence on the angle of incidence of the surface of each surface element. These images are exam-
ple inputs into the APD simulation.

Signal and Noise Sources Included  
in the Simulation

There are many sources of primary electrons that can 
trigger an avalanche (causing a firing) within the APD. 
These sources are divided into signal (the laser return 
reflecting from the target) and noise (everything else). 
This section discusses the various sources we include in 
the simulation.

Laser Return from Hard Target

Signal photoelectrons result from the reflection of the 
laser from the surface of an object. The previous section 
described how we model the relative reflectivity within 
our scene-generation step. This relative reflectivity is 
scaled by the product of the average reflectivity of the 
scene of interest and the average number of photoelec-
trons received from the target by our system.

The average number of photoelectrons derived from 
the target is itself a product of many system parameters, 
including average power of the laser, quantum efficien-
cy of the detector, atmospheric transmission, receiving 
optics aperture size, and spectral-filter bandpass. The 
number of photoelectrons depends on the inverse square 
of range. The simulation code was written to take aver-
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age photoelectron rate (at a particular range) as input, 
so the calculation using the system parameters is done 
externally to the code.

The laser return also has a temporal distribution. We 
currently assume a truncated Gaussian temporal dis-
tribution for the transmitted laser pulse, but other dis-
tributions could easily be modeled. With the Gaussian 
distribution, we specify the width of the pulse.

Transverse intensity variations across the laser beam 
are also included in the simulation. Our simulated laser 
source has a selectable spatial distribution at the scene. 
We currently have implemented three different distri-
butions: uniform, Gaussian, and an array of Gaussian 
spots (used in the Jigsaw system). Any other spatial dis-
tribution could easily be modeled in the simulation.

Sunlight Reflected from Hard Target

The main source of background photoelectrons in the 
simulation comes from sunlight reflecting from the 
scene. As a result, we again use the reflectivity of the 
model, just as we do for laser reflections. Here the rela-
tive reflectivity modeled in the scene generation step is 
scaled by the expected number of photoelectrons from 
solar reflections. This value is again the product of 
many of the systems parameters listed above (exclud-
ing laser power), in addition to atmospheric parameters 
such as time of day and relative angle between sensor 
and sun. Unlike the laser return, however, this source 
of background photoelectrons has a constant mean rate 
because the sun is a continuous source of photons.

Scatter by Atmospheric Aerosols

Aerosols scatter both sunlight and laser light. Aerosol-
scattered sunlight photons are uniformly distributed in 
both time and space. Backscattered laser photons are 
modeled in the same way, except the photons come only 
from the region in front of the target (between the laser 
and the target). The simulation accounts for attenuation 
of the two laser signals (reflections from a hard target 
and backscatter from aerosols) by aerosol absorption.

Dark Current

Dark current, created by thermal effects within the 
APD detector material, is assumed to be uniformly dis-
tributed in time. All APD pixels are assumed to have 
the same dark current.

APD Simulation

Now that we have generated an input scene and charac-
terized the sources of photoelectrons and dark current, 
the next step in the simulation is to define the APD pa-
rameters. These include the dimensions of the APD ar-
ray in pixels, the width of the range gate (i.e., the length 
of time the APD is “armed”), the size of the range bin 
(i.e., the temporal resolution of the digital timing cir-
cuitry integrated with the APD), and the size and shape 
of the APD area that is sensitive to photons. We also 
simulate the blurring, if any, caused by the optics of the 
system.

For each range bin and for each APD pixel, we add 
all of the sources of photoelectrons (as described above) 
and dark current for each micropixel, and then add the 
contributions from each micropixel in the APD pixel. 
We next calculate the cumulative probability distribu-
tion function, as described earlier, and then “throw the 
dice” to determine when, if at all, each detector fires on 
a given laser pulse. This process is repeated a number of 
times (set by the laser pulse rate) for each rendered im-
age corresponding to a discrete time step (the scene may 
vary from step to step, owing to motion of the sensor). 
Typically, the time step is a fraction of a second. Figure 
9 shows an example return from a 256 × 256 element 
APD for a single laser pulse for the scene shown in Fig-
ure 8 (from the scene generator). Black pixels represent 
APD array elements that did not fire, and white pixels 
represent those that fired from noise rather than from 
the laser return from the target.

As discussed earlier, we can do range-coincidence 
processing with either multiple pulses or multiple detec-
tors or both. Figure 10 shows the results of range-coin-
cidence processing with fifteen laser pulses. The image 
on the left maintains 256 × 256 elements in the pro-
cessing. The image on the right combines each 2 × 2 
set of elements to create a 128 × 128 image with much 
better fill.

Additional Features in the System Simulation

We can supplement the simulation with other system 
processes such as pointing jitter, scanning, range track-
ing, APD cross talk, and APD response function (which 
characterizes timing jitter). These additional effects are 
discussed in more detail in this section.
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APD Response Function

Inherent in the physics of the APD is a random delay 
between photon absorption and full development of the 
avalanche. The time distribution of this delay is called 
the APD response function and is included in the simu-
lation. The system response function (laser pulse width 
plus APD response function plus range discretization) is 
measured by collecting data while imaging a flat plate. 
Ideally, a flat plate would give the same range measure-
ment with each laser pulse. The spread in the ranges 
defines the system response function. For the Jigsaw 
system, the system response function is dominated by 
the APD response function.

For the simulations presented in the next section we 
use a piece-wise analytic function to model the APD 
response function. Cross-talk effects are incorporated 
into this function, but are negligible. Figure 11 com-
pares simulated (shown in red) and measured (shown 
in black) range histograms for a flat plate (the system 
response functions). The figures show four different 
real pixel histograms. Although slight variations occur 

FIGURE 10. Images showing results of range-coincidence processing with fifteen laser pulses. The fifteen frames (laser puls-
es) are independent realizations, one of which is shown in Figure 9, and are color coded by height, as in Figure 8. The left im-
age maintains 256 × 256 APD elements in the processing. The right image combines each 2 × 2 set of APD elements to create 
a 128 × 128 image with much better fill rate. These images illustrate that during post-processing a trade-off can be made be-
tween resolution (with lower fill rates) and fill rate (with lower resolution), and both can be done with the same data. 

FIGURE 9. Sample single-pulse output of the simulation for 
a 256 × 256 element APD. Black pixels represent APD array 
elements that did not fire, and white pixels represent those 
which fired from noise rather than laser return from the tar-
get. The input scene is that shown in Figure 8, and the im-
age is color coded by height, as in Figure 8.
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from pixel to pixel in the measured data, we assume in 
the simulation that all pixels have the same system re-
sponse function. Thus the four red curves are identical.

Cross Talk

Cross talk is quantified as the probability versus time 
that a particular neighboring APD pixel will fire after a 
given APD pixel fires. We made measurements of cross 
talk of actual APD arrays and implemented the results 
in the simulation in the following way. After we gener-
ate a simulated frame of APD data (for a single laser 
pulse), we add additional detections with the desired 
probabilities and temporal distributions.

Figure 12 shows a comparison of simulated data to 
measured data. The graph is a range histogram of data 
from a flat plate. From the measured data we estimated 
the number of photoelectrons from the target and the 
noise, assuming no cross talk was present, which in-
flated the estimates. Then we ran a simulation without 
cross talk included (blue curve). Although the simulat-
ed and actual data agree for ranges up to and including 
the plate, the simulation shows more detections after 
the plate than were actually measured. These extra de-
tections are due to the inflated noise estimate. We then 

incorporated cross talk, adjusted the estimated signal 
and noise levels appropriately, and ran a new simulation 
(red curve). We can see that the new simulation and 
the measured data generally agree within the shot-noise 
scatter of the data points. Note that this APD had a 
particularly large amount of cross talk that is not typi-
cal of most of our APDs.

Scanning

The 3D ladar systems we are currently using incorpo-
rate 32 × 32 APD arrays. In order to build an image 
with more pixels we must scan the APD array over the 
scene. Different scanning schemes can be evaluated 
with the simulation. In order to accommodate scan-
ning, the input scene we generate must be much larger 
than the field of view of the APD array. Then, on each 
laser pulse, we look at a particular subscene as defined 
by the scanning pattern. 

Pointing Jitter

On any moving platform that is tracking a target, 
pointing jitter is an important factor in system perfor-
mance. In our simulation we have implemented several 
jitter models, including Gaussian jitter, linear drift plus 
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FIGURE 11. Comparison of simulated versus measured range histograms. The black curves show mea-
sured system response functions of four APDs in a 32 × 32 array. The red curve, which is identical for 
all four pixels, is the system-response function used in simulations involving this system. The pixel-to-
pixel variations in the measured functions are slight enough to be ignored in the simulation.
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Gaussian jitter, and colored jitter. With colored jitter 
we use the actual or predicted spectrum of a real sys-
tem. To implement jitter, on each laser pulse we shift 
the scene by a particular number of micropixels in each 
dimension. 

Range Tracking

Range tracking entails real-time processing of either 
APD data or GPS data to keep the targets of interest 
within the range gate of the system, preferably near the 
front in order to minimize noise effects. On a moving 
platform this restriction may require that the system 
track the range to the target. Various range-tracking al-
gorithms can be explored with the simulation.

Jigsaw Case Study

The objective of the Jigsaw program, sponsored by the 
Department of Defense Advanced Research Projects 
Agency (DARPA), is to locate and identify obscured 
targets within a small area (about twenty meters square) 
from an air vehicle at low altitude (about a hundred me-
ters). Figure 13 illustrates the basic concept of Jigsaw. 
Identification is aided by using angle diversity to maxi-
mize penetration of foliage. Data from various views are 
combined to generate a high-resolution (7.5 cm) 3D im-

FIGURE 13. Concept of the Jigsaw program. The objec-
tive is to locate and identify obscured targets within a small 
area (about twenty meters square) from a small organic air 
vehicle at low altitude (about a hundred meters). Three-di-
mensional data from various views are combined in post-
processing to generate a more complete 3D image of the 
target than that from any one view.
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FIGURE 12. Range histograms of APD data for an image of 
a flat plate. The measured data points (triangles) are taken 
from an actual APD with an unusually high amount of cross 
talk. The simulated data without cross talk included (blue 
curve) match the measured data only before and at the flat 
plate, but not after the flat plate. Adding a model of cross 
talk to the simulation (red curve) yields good agreement 
with the measured data at all ranges.

age of the target. Identification is done by comparing 
the 3D data against models of known targets of inter-
est. Details of the Jigsaw program can be found else-
where in this issue of the Journal [5].

We first show qualitative and quantitative compari-
sons of Jigsaw data to simulated data of a target in the 
clear. Later we show qualitative comparisons for a target 
under trees. For the target-under-trees case, it is imprac-
tical to attempt quantitative comparisons, because the 
trees for the Jigsaw experiment were not well character-
ized and were undoubtedly very complex objects.

The simulation includes the basic system character-
istics of Jigsaw: signal level, noise level, APD response 
function, flight path, scanning, and data-processing 
algorithm. The signal level was derived from a calibra-
tion performed during the same flight as the data be-
ing simulated. The noise level was estimated from the 
actual data being simulated, since it depends on many 
parameters such as time of day. The measured cross talk 
for Jigsaw is small and is neglected in the simulation. 
Our model of the actual vehicle is not exact, but it is 
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FIGURE 14. Color-coded height images of real Jigsaw data of an M-60 tank in the clear (top row) and corresponding images of 
simulated Jigsaw data (bottom row). The first three images in each row are individual ¼-sec frames. The fourth image in each 
row is the composite of eighteen ¼-sec frames. The data are viewed from directly above, although the individual frames were 
collected from different views. The flight path starts south of the tank (north is at the top of the page), resulting in the shadow 
above the tank in the first image. The flight path proceeds due north, passing over the tank, and ends to the north of the tank in 
the third image, resulting in the shadow below the tank in that image. Images from the simulation are clearly a good qualitative 
match to the images from the real data. 

close (a minor feature at the rear of the turret is miss-
ing from our model). A model for the local ground was 
generated from the Jigsaw data. Jitter is not included in 
the simulation.

The Jigsaw scanning system uses two counter-rotat-
ing wedged (Risley) prisms. They create a scan pattern 
resembling a rotating rosette. This pattern is evident 
in the images included in this article. During the time 
that it takes to complete a rosette (¼ sec), the pattern 
rotates only a few degrees. The data collected over ¼ sec 
are processed together to yield an image frame. While 
we simulated the actual scan pattern, we did not try to 
match its phase with that of the actual data, and there is 
a slight phase difference. 

The coincidence-processing algorithm used for the 
Jigsaw program is called voxel coincidence processing. It 
is based on the coincidence processing discussed earlier, 
except that it is performed in three dimensions. Basical-
ly, we compute a 3D histogram after we convert all the 
data points from an angle-angle-range coordinate sys-

tem to a fixed earth-based Cartesian (xyz) coordinate 
system. Histogram bins, or voxels, can be ignored if too 
few data points (i.e., fewer than some threshold) land 
within it. This processing has been performed with a 
specified threshold on all of the results that follow.

Before comparing Jigsaw data to simulated data, we 
note that the actual Jigsaw images are slightly blurred 
and distorted. These image defects arise from uncer-
tainties in sensor line-of-sight angles, aircraft position, 
and aircraft attitude during data collection. Errors 
in these metric quantities cause errors in placing data 
points in the earth-fixed Cartesian coordinate system. 
These errors are unknown and time dependent, and 
they cannot be entirely removed by translating and ro-
tating (registering) one frame with respect to another. 
They are not included in the simulations. We believe 
that these unmodeled errors explain many of the differ-
ences between the simulated and actual images shown 
in this article.

Figure 14 shows the real Jigsaw image data (top row) 
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and the simulated image data (bottom row) of an M60 
tank in the clear. The color coding represents height 
above ground. These images have been processed with a 
threshold of two (i.e., at least two detections per voxel). 
The four frames in each row represent three different 
measurement times during the flight and the composite 
image of all eighteen frames. The real data (top row) 
have errors arising from the metric uncertainties men-
tioned in the previous paragraph. For example, height 
errors are indicated by the barely perceptible differences 
in the ground (indicated by slight differences in color) 
in the individual frames in the top row and by the ap-
pearance of the rosette pattern in the composite frame. 
Comparing now the real (top row) and simulated (bot-
tom row) images, we see that the phases of the rosette 
scan patterns differ. Other differences between real and 
simulated data are small and are most apparent at the 
back end of the turret where our CAD model did not 
match the real tank. 

Figure 15 shows the data from the second frame 
in each row of Figure 14 (the view closest to nadir) in 
another representation. Figure 15 is a scatter plot of all 
the data (processed by using voxel coincidence process-

ing with a threshold of one) as a function of height and 
x-axis position. The left frame is simulated data and the 
right frame is real data. The cloud of points outside the 
black areas of the tank and ground is noise from dark 
current and background light. The left-to-right varia-
tion of the noise arises from the irregular scan pattern 
of the Risley prisms. The horizontal stripes in the real 
data are caused by unmodeled minor imperfections in 
the real focal-plane array. 

The differences between the real and simulated data 
arise mostly from the two effects mentioned earlier: the 
uncertainties in pointing and aircraft position and atti-
tude, and the scan-pattern phase difference between the 
real and simulated data. The position and attitude un-
certainties cause a blurring of the ground layer, making 
it appear thicker. The phase difference in the scanning 
results in different parts of ground being illuminated for 
any given ¼-sec frame. This difference in illumination, 
when projected horizontally (as in Figure 15) results in 
different profiles. The difference in the two scatter plots 
is most evident at the feature between lengths –13 m 
and –5 m. This feature is the projection of a mound 
on the ground (seen in the lower left part of the images 

FIGURE 15. Scatter plots of simulated (left) and real (right) Jigsaw data, using voxel coincidence processing with a threshold 
of one. These are the same data as shown in the second frame in each row of Figure 14. The differences arise mostly from two 
effects: blurring of the real data due to uncertainties in pointing and aircraft position and attitude, and the difference in phase 
of scanning between the real and simulated data. This phase difference causes different ground regions to be illuminated, re-
sulting in different profiles. Overall, however, this figure shows good qualitative agreement between simulated and real data. 
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in Figure 14). For the simulated data (in the left plot 
of Figure 15), the entire length of the mound is illumi-
nated, making a flat profile, whereas for the real data 
(in the right plot), only the two sides are illuminated, 
resulting in the two humps.

While Figures 14 and 15 show qualitative agreement 
between simulated and real data, Figure 16 provides a 
quantitative comparison by showing the histograms (in 
the height dimension) of the data presented in Figure 
15. Three different xy regions are shown in order to 
sample non-uniformity in the scan pattern. We can see 
that there is generally good agreement between the real 
Jigsaw data (shown in black) and the simulated data 
(shown in red). The discrepancy at heights near –2 m is 
probably caused by the unmodeled metric uncertainties 
mentioned earlier, and by differences between the ac-
tual and modeled ground. The extra fluctuations in the 
real data above four meters, which correspond to the 
horizontal stripes in Figure 15, are caused by unmod-
eled imperfections in the real focal-plane array.

One measure of the performance of the simulation 
is based on how well simulated data and real data can 
be registered to a CAD model. The iterative closest 

FIGURE 17. Goodness-of-fit measures of iterative closest 
point (ICP) registration for both simulated and real data for 
all eighteen frames simulated. The mean-squared sepa-
ration (MSS) is shown in red, and the number of matched 
points (divided by 1000) is shown in black. These two mea-
sures for the simulated data are within about 20% of the 
measures for the real data. The discrepancies arise large-
ly from not modeling the blurring of the real data caused by 
uncertainties in pointing and the relative position and atti-
tude of the aircraft. This result shows that simulated data 
can probably be reliably used to study registration-algo-
rithm performance.
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point (ICP) algorithm [12–14] is a method commonly 
used for registration. Briefly, given two sets of points, 
the ICP algorithm pairs each point in one set with the 
closest point in the other set, as long as their separation 
is below some selectable value. The algorithm then cal-
culates the amount of translation and rotation to apply 
to one set of points to minimize the mean separation of 
the pairs of points. The algorithm iterates these steps 
until some error threshold is achieved. There are two 
primary goodness-of-fit measures that come out of an 
ICP registration of data points to points on a CAD 
model: the final number of data points that are paired 
with CAD-model points, and the final mean-squared 
separation between the pairs.

We ran an ICP algorithm to register the real data to 
a CAD model and then to register the simulated data 
to the same CAD model. Figure 17 shows the result-
ing goodness-of-fit measures. The figure shows mean-
squared separation in red and the number of matched 
points (divided by 1000) in black for all eighteen ¼-sec 
frames. The agreement is generally very good. 

Both measures are about 20% larger for the real 
data than for the simulated data. The explanation for 

this discrepancy is that the real-data image is blurred. 
In our Jigsaw data processing, we have seen that uncer-
tainties in pointing and the relative position and relative 
attitude of the aircraft do indeed cause image blurring 
within a single ¼-sec frame. These effects are absent in 
the simulation, for which we assumed that pointing and 
the aircraft position and attitude were known exactly 
throughout the data collection. We verified that adding 
range blur to the simulation increases both the mean-
squared separation and the number of matched points.

Adding Obscurants 

Arete Associates, a contributor to the JIGSAW pro-
gram, was tasked to develop relevant tree models for the 
program. Arete gave Lincoln Laboratory CAD models 
of trees as well as a distribution of those trees which 
would provide 90% obscuration at nadir. The tree 
models consisted of two different species—yellow birch 
and sugar maple—at seven different heights. Figure 18 
shows a sample of these two tree models. Table 1 shows 
the distributions of trees needed for 90% obscuration 
at nadir over one tenth of an acre (20 m × 20 m). The 
trees were distributed randomly in space with random 
rotations. This distribution was scaled to yield other ob-
scuration ratios.

With the tree models provided by Arete Associates, 
we generated scenes that represented 71% and 98% 
obscuration at nadir. The 98% obscuration scene con-
sisted of over six hundred trees. These scenes were com-

FIGURE 18. CAD models of trees from Arete Associates. A 
sugar maple is on the left and a yellow birch is on the right.

Table 1. Distribution of Trees over 0.1 Acres for 
90% Obscuration at Nadir

 Height of tree (ft) Sugar maple Yellow birch

 20 5 1

 30 5 1

 40 10 2

 50 16 3

 60 5 1

 70 12 3

 80 5 1
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FIGURE 19. Color-coded height images of real Jigsaw data of a T-72 tank under 50% to 60% obscuration by 
foliage. The data are viewed from nadir even though they were collected from other angles. The four images 
on the left are individual ¼-sec frames of data, and the two images on the right are the composite of eighteen 
¼-sec frames. The four images on the left and the one in the lower right have the canopy excised to show the 
underlying tank. The image in the upper right does not have the canopy excised and the tank cannot be seen.

FIGURE 20. Color-coded height images of simulated data of a T-72 tank under 71% obscuration by foliage. 
The qualitative agreement between these images and the corresponding images in Figure 19 is very good.
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bined with a model of a T-72 tank. The flight path was 
the same as for the simulations used above.

Figure 19 shows real Jigsaw data of a T-72 tank un-
der 50% to 60% obscuration by foliage. The images 
are color coded by height above ground. The data are 
viewed from nadir even though they were collected 
from other angles. The four images on the left side of 
the figure are individual ¼-sec frames of data with the 
tree canopy excised in order to show the underlying 
tank. The two images on the right are a composite of 
eighteen ¼-sec frames. The image in the lower right also 
has the canopy excised. The image in the upper right 
does not have the canopy excised and the tank can-
not be seen. This figure clearly illustrates the benefits 
of looking at the tank from different viewpoints. Parts 
of the tank hidden by the foliage from one viewpoint 
may be revealed from another. Once the data points are 
converted from angle-angle-range sensor coordinates 
to earth-fixed Cartesian coordinates, the data from all 
viewpoints are combined to form a more complete im-
age of the tank than that from any single viewpoint. It 
is the 3D nature of the data that allows us to aggregrate 
the data in this way.

Figure 20 shows simulation data of a T-72 tank un-
der 71% obscuration by foliage. The layout of the fig-
ure is the same as the layout in Figure 19. The simula-
tion parameters were not set to match exactly the real 
Jigsaw data shown in Figure 19; only the underlying 
object (the T-72 tank) is the same. The foliage in the 
Jigsaw experiments was not well characterized and was 
undoubtedly complex. The qualitative agreement of the 
real imagery (Figure 19) and simulated imagery (Figure 
20) is very good. Notice that in the composite image, 
the real data is slightly blurred because of the effects dis-
cussed earlier.

Figure 21 shows the results for the 98% obscuration 
simulation. Again, the layout of the figure is the same 
as that in Figures 19 and 20. This simulation shows 
that penetration through even dense foliage is possible. 
While parts of the object may never be visible, com-
bining data from different views may still allow target 
identification or target classification (for example, tank 
versus jeep).

Summary

We used Poisson statistics and a Monte Carlo technique 

FIGURE 21. Color-coded height images of simulation data of a T-72 tank under 98% obscuration by foliage. 
The layout of the images is the same as that in Figures 19 and 20.
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to calculate the probabilities of detection and false alarm 
for a ladar that has a single Geiger-mode detector. Sets 
of parametric curves relate these probabilities to signal 
and noise levels, number of laser pulses, and obscura-
tion ratio. Such curves have helped Lincoln Laboratory 
design 3D ladars that have been fielded.

The single-detector technique is the basis for a com-
puter model that simulates the 3D images of a complex 
scene obtained by a ladar with an array of Geiger-mode 
detectors. We have used the computer model to help 
predict ladar performance and to develop data-process-
ing techniques. All of the critical features of the Geiger-
mode APDs are included in the simulation.

We performed a detailed validation of the simulation 
and found that simulation output agreed qualitatively 
with measured data from the DARPA-funded Jigsaw 
program. In addition to qualitative measures, we se-
lected three quantitative measures for comparison. The 
first was a histogram of detections in the height direc-
tion. The other two came from performing an iterative 
closest point (ICP) registration with a CAD model. 
The ICP registration reports a mean-squared separation 
(MSS) and the number of points that were matched be-
tween the data and the CAD model. By these two mea-
sures, the agreement between real and simulated data is 
within 20%. 
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